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1  | INTRODUC TION

Over the last few decades, phylogenetic comparative methods 
have become a central approach in ecology and evolutionary biol-
ogy, boosted by the expansion of comparative methods available 
in r (Garamszegi, 2014; Paradis, 2012). Like all statistical models, 
phylogenetic comparative methods are subject to several types of 
uncertainty, which can affect conclusions we draw from these anal-
yses (Donoghue & Ackerly, 1996; Felsenstein, 2008; Huelsenbeck, 
Rannala, & Masly, 2000). Yet, the sensitivity of (biological) con-
clusions to uncertainty is seldom considered (Cooper, Thomas, & 

FitzJohn, 2016). This can cause researchers to overestimate the reli-
ability of their findings, for instance by estimating too narrow confi-
dence intervals or by providing biased parameter estimates (Rangel 
et al., 2015; Silvestro, Kostikova, Litsios, Pearman, & Salamin, 2015).

Three main sources of uncertainty can affect comparative meth-
ods (Figure 1). (1) Species sampling uncertainty encompasses uncer-
tainty in parameter estimates resulting from (arbitrary) variation in 
the species set included. (2) Phylogenetic uncertainty encompasses 
uncertainty in phylogenies used in comparative analyses. (3) Data 
uncertainty includes both within- species variation in trait values 
as well as measurement error that might occur when determining 
trait values. Sensitivity analysis is a powerful approach to evaluate 
if conclusions are influenced by these uncertainties in comparative 
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Abstract
1. Biological conclusions drawn from phylogenetic comparative methods can be sen-

sitive to uncertainty in species sampling, phylogeny and data. To be confident 
about our conclusions, we need to quantify their robustness to such uncertainty.

2. We present sensiPhy, an r-package, to easily and rapidly perform sensitivity analy-
sis for phylogenetic comparative methods. sensiPhy allows researchers to evaluate 
the sampling effort, detect influential species and clades, assess phylogenetic un-
certainty and quantify the effects of intraspecific variation, for phylogenetic re-
gression and for metrics of phylogenetic signal, diversification and trait 
evolution.

3. Uniquely, sensiPhy allows users to simultaneously quantify the effects of different 
types of uncertainty and potential interactions among them.

4. Using real data, we show how conclusions from comparative methods can be af-
fected by uncertainty and how sensiPhy can help determine if a conclusion is 
robust.

5. By providing a single, intuitive and user-friendly resource that can evaluate vari-
ous sources of uncertainty, sensiPhy aims to encourage researchers, and particu-
larly less-experienced users, to incorporate sensitivity analyses in their 
phylogenetic comparative analyses.
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biology (Cooper et al., 2016; Cornwell & Nakagawa, 2017; Donoghue 
& Ackerly, 1996). Here, we present sensiPhy, an r- package, to per-
form sensitivity analysis for the most frequently used phylogenetic 
comparative methods. Our main goal is to make it easier for less- 
experienced users to implement the best practices when running 
comparative analyses. To our knowledge, this is the first effort to 
combine in a single resource functions to account for three types of 
uncertainty in commonly used comparative methods.

2  | THE s e n s i Ph y  PACK AGE

sensiPhy is written in the r- language (R Core Team, 2017) and is avail-
able on the CRAN repository. The package provides an umbrella of 
statistical and graphical methods to estimate and report sensitivity 
to uncertainty in phylogenetic comparative analysis (PGLS, phy-
logenetic signal, diversification and trait evolution). We leverage 
methods implemented in the r- packages Phylolm, Phytools and geiger 
(Harmon, Weir, Brock, Glor, & Challenger, 2008; Ho & Ané, 2014; 
Revell, 2012) and implement functions to perform sensitivity analysis 
for phylogenetic generalized least squares models (PGLS; both using 
linear and logistic regression models), for estimates of phylogenetic 
signal in trait data (Blomberg, Garland, & Ives, 2003; Pagel, 1999), 
for macroevolutionary models (both continuous and discrete, binary, 
traits) and estimates of diversification rates (Harmon et al., 2008; 
Magallon & Sanderson, 2001). For each type of sensitivity analysis, 
a specific set of diagnostics graphics and summary statistics are pro-
vided (Figure 1). In all PGLS functions, the evolutionary model to use 
can be specified (e.g. Brownian Motion and Ornstein- Uhlenbeck; Ho 
& Ané, 2014), allowing the user to analyse the fit of different models 
and select the most appropriate one (Cornwell & Nakagawa 2017; 
Garamszegi, 2014; Pennell, FitzJohn, Cornwell, & Harmon, 2015). 

Scientists can use sensiPhy to analyse results originally obtained from 
other software (e.g. PGLS with caper or gls) when available analysis 
use the same macroevolutionary models implemented in Phylolm, 
Phytools and geiger (e.g. Brownian Motion, OU, lambda; see package 
vignette for examples and details).

3  | SOURCES OF UNCERTAINT Y

We briefly highlight the three main sources of uncertainty, 
 indicating how they can affect conclusions, and then provide two 
examples on how researchers can use sensiPhy. A full tutorial, high-
lighting examples for all sources of uncertainty and implemented 
functions, can be found in the package vignette and on github 
(https://github.com/paternogbc/sensiPhy/wiki) .

3.1 | Species sampling uncertainty

Some species, or clades of species, are particularly important drivers 
of parameter estimates. However, often the set of species sampled in a 
comparative analysis is determined by considerations that are arbitrary 
from an evolutionary perspective, like the presence in a trait database 
or easy access in the field. Also, conclusions can be sensitive to the 
number of species being studied, or the sampling effort. Moreover, par-
ticular species or clades can represent influential cases and can drive 
key results because they show a pattern that is different in strength or 
direction than the general pattern. Since in all of these cases, the source 
of uncertainty is driven by the set of species considered, we group all 
these issues under the name of species sampling uncertainty.

The samp- functions (samp _ phylm, samp _ phyglm, samp _

physig, samp _ continuous and samp _ discrete; Figure 1) 
uses a jackknifing method to test if models are robust to variation 

F IGURE  1 Overview of the main 
functions in sensiPhy organized by source 
of uncertainty. sensiPhy contains functions 
to quantify the effects of the three types 
of uncertainty and of interactions among 
them: phylogenetic uncertainty (tree), 
uncertainty arising from species sampling 
(influ, clade and samp) and uncertainty 
in the underlying trait data (intra)
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in the set of species and sample size (Efron, 1982; Werner, Cornwell, 
Sprent, Kattge, & Kiers, 2014). The function fits PGLS regressions, 
tests for phylogenetic signal or calculates metrics for trait evolution 
after iteratively removing user- defined fractions of species at ran-
dom and compares simulations with the model using the full dataset.

The influ- functions (Figure 1) perform leave- one- out- deletion 
analysis to test if specific species are strongly driving the results. For 
all species, these functions fit a new model without a given species 
(reduced data) and compare the estimated parameters using the full 
dataset. This analysis can reveal influential cases (species driving rel-
atively large changes in parameter estimates) and test model stabil-
ity across samples. The clade- functions (Figure 1) extend the same 
leave- one- out approach to detect influential clades (or more gener-
ally, groupings of species). The functions remove all species belonging 
to a clade and compare the reduced and the full datasets using a ran-
domization test to correct for the number of species removed.

Three simple measures are used to estimate sensitivity in model 
parameters.

1. the raw difference:

where bi is the estimated parameter for the reduced dataset and b0 
is the estimated parameter for the full dataset;
2. the standardized difference:

where SDdbi is the standard deviation of dbi, thus Sdbi is a simple 
z-score of dbi; and;
3. the percentage of change:

where |dbi| is the absolute raw difference (Equation 1). While these 
functions provide useful estimates of how subsets of the dataset 
change key results, they do not account for potential structural bi-
ases in the available data (e.g. bias in missing data). For instance, a 
common problem in comparative analyses occurs when data is miss-
ing non-randomly with respect to the phylogeny. To help detect this 
problem, we provide a supplementary function (miss.phylo.d), 
which detects phylogenetic signal in missing data (D-statistics; Fritz 
& Purvis, 2010; Orme, Freckleton, Thomas, Petzoldt, & Fritz, 2013).

3.2 | Phylogenetic uncertainty

Phylogenetic uncertainty refers to the notion that there are usually a 
number of alternative phylogenetic hypotheses with different topol-
ogies and/or branch lengths. Yet, comparative studies often analyse 
a single tree which is thought of as the “best” estimate out of a fam-
ily of candidate phylogenies, without accounting for phylogenetic 
uncertainty, potentially biasing statistical inference (Donoghue & 
Ackerly, 1996; Hernandez et al., 2013; Rangel et al., 2015). A simple 
way to account for phylogenetic uncertainty in comparative meth-
ods is to repeat the analysis using a sample of relevant phylogenetic 

trees (Donoghue & Ackerly, 1996). The influence of phylogenetic 
uncertainty can be quantified by the amount of variation in model 
parameters between competing models fitted with alternative trees 
(Hernandez et al., 2013; Martinez et al., 2015). The tree- functions 
(Figure 1) account for multiple phylogenetic hypotheses, by rerun-
ning the models over a multiPhylo object containing different candi-
date phylogenies and comparing parameter estimates across these 
reruns.

3.3 | Data uncertainty

Intraspecific variation due to differences between individuals or 
to measurement errors is an important source of uncertainty and 
can influence both parameter estimation and hypothesis test-
ing (Felsenstein, 2008; Garamszegi & Møller, 2010; Silvestro et 
al., 2015). One way to account for intraspecific variation is by 
simulating trait values for each species derived from the intraspe-
cific standard deviation of the mean, which users can calculate 
from their own data if they have multiple measurements per tip 
(Martinez et al., 2015). Rather than assuming a single trait value 
per species, this approach tests the sensitivity of comparative 
models to variation in the underlying trait data, accounting for 
the confidence range around the estimate (Garamszegi, 2014). The 
intra- functions (Figure 1) account for such uncertainties both in 
response and explanatory variables. While the statistical distribu-
tion of such intraspecific variation may not always be known, the 
functions implement two potential trait distributions (normal and 
uniform).

3.4 | Interactions among uncertainty types

Most users of phylogenetic comparative methods will face multiple 
sources of uncertainty simultaneously (Cooper et al., 2016; Cornwell 
& Nakagawa, 2017). Different types of uncertainty can interact, 
potentially further reducing the robustness of a result. Yet, the in-
teraction between types of uncertainty is rarely studied (but see: 
Martinez et al., 2015), even in cases where sensitivity to single un-
certainties is quantified (Werner et al., 2014), potentially because of 
a lack of available tools. We implemented functions to study inter-
actions of both phylogenetic uncertainty (tree- functions) and data 
uncertainty (intra- functions) with sampling uncertainty (clade- , 
influ-  and samp- functions), as well as interactions between data 
and phylogenetic uncertainty.

3.5 | Example 1: Influential clades

We included two datasets in sensiPhy: “primates” (Jones et al., 2009) 
and “alien” (González- Suárez, Bacher, & Jeschke, 2015). Each data-
set contains a multiPhylo file with 101 phylogenetic trees originated 
from pseudo- posterior distribution and pruned to match species 
in data (Fritz, Bininda- Emonds, & Purvis, 2009; Kuhn, Mooers, & 
Thomas, 2011). As an example, we use the “primates” dataset to in-
vestigate how the deletion of entire clades (families) can influence 

(1)dbi=bi−b0

(2)Sdbi=dbi∕SDdbi

(3)Pdbi= (|dbi|∕b0)∗100
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model parameters for a PGLS linear regression between sexual 
 maturity (days) and adult body mass (g).

The function clade_phylm reruns the phylogenetic regression 
between sexual maturity and body mass, iteratively leaving out in-
dividual families. This is defined by the argument “clade.col” which 
indicates the grouping variable defining which species to include. 
Typically, these will be taxonomically defined, but other groupings 
can be used, for instance based on geographical locations, sam-
pling methods or data sources. The function sensi _ plot can 

be used to visualize the results (Figure 2) while summary shows 
the effect of each clade on model parameters (Table 1; complete 
output in Supplementary Material).

The analysis reveals that without species from the 
Cercopithecidae the regression slope is 22.8% higher than the full 
dataset model (Table 1; Figure 2a), indicating that this family has a 
major negative influence on the relationship between sexual matu-
rity and mass. Removal of Cebidae species had a smaller and inverse 
effect (Table 1; Figure 2b) while Lemuridae species had only a minor 
effect on model parameters (Table 1).

F IGURE  2 Diagnostic graphs from 
the function clade _ phylm for the 
clade Cercopithecidae (a,b) and Cebidae 
(c,b). The effect of clade removal on the 
phylogenetic regression between sexual 
maturity and adult body mass of 95 
primates species (a,c). Null distribution of 
estimates after randomly removing the 
same number of species as the focal clade 
(b,d)

(a) (b)

(c) (d)

TABLE  1 Subset of the summary 
output from clade_phylm

Clade removed Estimate DIFestimate Change (%) pval
pval.
randomization

Cercopithecidae 0.308 0.057 22.8 5.7E- 11 .168

Cebidae 0.220 −0.031 12.2 7.3E- 07 .006

Callitrichidae 0.226 −0.024 9.8 5.3E- 08 .004

Lemuridae 0.258 0.008 3.1 1.3E- 09 .430

Estimated model parameters after removing clades. DIFestimate indicates the shift in slope when 
excluding a species grouping (Equation 1), “change %” expresses this as a percentage (Equation 3). 
pval.randomization indicates the p- value for the randomization test (main text).
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However, Cercopithecidae contains substantially more spe-
cies (N = 32) than Cebidae (N = 19). We would therefore expect 
Cercopithecidae to have a larger effect on parameter estimates, 
by virtue of it containing a larger proportion of the species anal-
ysed. To correct for clade size, a randomization test analyses if the 
change in parameter estimate is significantly different from a null 
distribution when randomly removing the same number of species 
as the focal clade. The randomization test shows that in fact the 
Cercopithecidae are an influential clade only because they contain 
a large number of species, not because the biological pattern is sub-
stantially different (p = .168, Table 1, Figure 2a,b). This is different 
for the Cebidae (and the Callitrichidae), which strongly influence our 
parameter estimates even when correcting for clade size, indicating 
a substantially different pattern (p = .006, Table 1, Figure 2c,d). The 
exclusion of the Lemuridae continues to have no effect, both in ab-
solute terms and when correcting for clade size (Table 1).

3.6 | Example 2: Interaction among influential 
clades and phylogenetic uncertainty

In the first example, we considered only a single primate phylogeny. 
However, a range of alternative phylogenetic hypotheses is available 
for this group (Fritz et al., 2009; Kuhn et al., 2011). We can use the 
function tree _ clade _ phylm to evaluate potential interactions 
among these two uncertainty types.

This function reruns Example 1 across multiple trees to test if 
the effect of clade removal on model parameters interacts with 

F IGURE  3 Diagnostic graphs from the function tree _ clade _ phylm. (a) Estimated slopes after clade removal across multiple trees. 
Solid black line: average slope estimate among trees using the full dataset. Red dots: reruns between phylogenetic trees (small dots) and 
average estimate (larger dot). (b–d) The effect of clade removal on slope estimate across individual trees for Cebidae (b), Cercopithecidae (c) 
and Lemuridae (d). Blue dots: null expectation estimates after removing the same number of species as in the focal clade

(a) (b)

(c) (d)
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phylogenetic uncertainty. The number of trees evaluated is set with 
the argument “n.trees”.

This analysis reveals that clade effects on estimates remained 
the same after taking into account multiple phylogenetic trees 
(Figure 3, Supplementary Table 1). For instance, the removal of the 
Cercopithecidae family continues to cause a strong increase in slope 
(Figure 3a). Furthermore, the effect of Cebidae (and Callitrichidae) 
on parameter estimates is significantly different from the null expec-
tation across all alternative phylogenies tested (few blue dots below 
the red line in Figure 3b), while the effect of Cercopithecidae and 
Lemuridae falls within the null distribution (Figure 3c,d). Therefore, 
this analysis confirms the robustness of previous results, suggesting 
there is no interaction among sampling and phylogenetic uncertainty.

3.7 | Implications and solutions of a sensitive result

Sensitivity analyses from sensiPhy can be a starting point for fur-
ther analyses (Table 2). Considering our examples, a first step could 
be to verify if the Cebidae data are somehow biased, resulting in 
a substantially different pattern. For instance, perhaps a different 
method to estimate sexual maturity was used than in the other 
primates, which may have overestimated age of sexual maturity 
in this clade. Alternatively, there could be biological reasons why 
the Cebidae show a stronger correlation among traits, which could 
provide interesting biological insight. New biological hypotheses 
could in turn be tested using comparative analyses. For instance, 
if an interaction with climate might drive the differential effects of 
body mass on sexual maturity in the Cebidae and the Callitrichidae, 
an expanded comparative analysis could test that hypothesis.

We highlight that a sensiPhy analysis cannot directly reveal 
the underlying reason why a biological effect is not robust to a 
given type of uncertainty. This can be for various methodological 
reasons or reflect an actual biological effect. While the implica-
tions of finding that a biological conclusion is sensitive to some, or 
multiple, forms of uncertainty will be highly context and model- 
system specific, we provide general pointers and solutions that 
users can explore (Table 2).

4  | CONCLUSIONS AND FUTURE 
DIREC TIONS

The sensiPhy package offers a quick and easy approach to check 
the robustness of frequently used comparative methods to 
multiple types of uncertainties. Performing sensitivity analy-
sis can greatly benefit authors by providing ways to estimate 
and  account for uncertainties and to detect and report possible  
bias in inference. The package helps researchers to be extra 
 careful with their results in an easy and straightforward way, 
increasing transparency in reporting results from comparative 
analyses. We hope sensiPhy will encourage the inclusion of sen-
sitivity analysis as a common practice in comparative biology. 
The statistical reasoning implemented in sensiPhy can be applied 
more generally to many other types of analyses. The package is  
open- platform and welcomes users to contribute with new func-
tionalities, facilitating new developments for sensitivity analysis in 
phylogenetic comparative methods through the github platform.
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TABLE  2 Potential implications and solutions when finding sensitive results

Biological question sensiPhy method Implications/potential solutions

Do influential species or clades 
drive result?

clade or 
influ

1. Verify if data is biased in influential species/clades?
2. Identify biological drivers of influential species/clades.
3. Ideally, verify (2) by including as term in comparative model.

Does sampling effort influence 
results?

samp 1. Increase sample size (overall).
2. If interaction with specific clades, increase sample size in those clades.
3. Consider test for phylogenetic signal in missing data.

Does intraspecific variation 
influence results?

intra 1. Verify if driven by imprecise measurements. Can we measure variables to greater 
precision?

2. Explicitly quantify intraspecific vs. interspecific variation in phylogenetic context 
(Garamszegi, 2014).

3. Consider if species level is the most appropriate level of analysis for this variable.

Does phylogenetic uncertainty 
influence results?

tree 1. Verify if specific (influential) trees have methodological issues.
2. Can we increase resolution/precision of our phylogenetic tree (e.g. include more/

better genetic markers)?
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