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Ellsberg Paradox

Urn containing balls

• 33 red balls

• 66 white or black balls

Two choice problems:

C1. £1 if red or £1 if black



Expected Utility Model

• ω : number of black balls

• Decision Maker forms a belief over ω : G

• Takes expectation when evaluating a lottery



Evaluation of Lotteries

Recall C1. £1 if red or £1 if black

If bet on red: probability of winning 33/99 = 1/3.

If bet on black: probability of winning

∫ 66

0
ω/99dG (ω) =

EG [ω]

99
.

“Choose black if you believe that there are more black than red”.



Paradox

C1. £1 if red or £1 if black

individuals choose red ⇒ EG [ω] < 33

C2. £1 if red or £1 if white

individuals choose red ⇒ EG [ω] > 33



Evolutionary Approach

• choice behavior is genetic

• individuals face choices over lotteries

• premise: only the fastest growing gene survives



Cohen-Robson Model

• state of the world: Ω ∼ G

• outcomes in offspring: X

• lottery: Fω is a distribution over X.

• time is discrete

• lotteries are independent across time

• gene: a choice from lotteries



Main Result

The utility criterion is:

∫

Ω
ln
(∫

xdFω (x)
)
dG (ω)



Growth Rate:

(continuously compounded growth rate)

yt : population at time t

yt ∼ cg
t

ln yt ∼ ln c+ t ln g

lim
t→∞

ln yt

t
= g



Proof

Let ωt denote the realization of ω at t.

Let µ (ω) =
∫
f (x) dFω (x).

Let y0 = 1.

Then:

yT = y0

T∏

t=1

yt

yt−1
=

T∏

t=1

µ (ωt) .



yT = y0

T∏

t=1

yt

yt−1
=

T∏

t=1

µ (ωt) .

So,

lim
T→∞

log yT
T

= lim
T→∞

∑
logµ (ωt)

T
.

By Birkhoff’s Theorem:

lim
T→∞

∑
logµ (ωt)

T
=

∫
logµ (ω) dG (ω)

=
∫
log

[∫
f (x) dFω (x)

]
dG (ω) .



Observation:

There are discrete changes in the size of the population

Question:

What happens if the population evolves smoothly?



Continuous-time Model

Lottery:
(
Ω, G, {Fe (·|ω)}ω∈Ω

)

Ω : set of states of the world

G : ergodic distribution on Ω



environmental shocks: {Fe (·|ω)}ω∈Ω

• net birth-rate εt ∼ Fe (εt|ωt)

• E (ε|ω) is a bounded function of ω,

• Fe (ε|ω) is uniformly continuous in ω.

• ε′ts are independent across individuals conditional on ωt.

• r (ωt) ≡
∫
εdFe (ε|ωt)



Main Result

lim
t→∞

(
log yt

t

)
=
∫ ∫

εdFe (ε|ω) dG (ω)

.



Proof

yt+∆ ≈ yt [1 + ∆r (ωt)]⇒
.
yt = ytr (ωt)

solution: yt = exp
[∫ t
0 r (ωs) ds

]

So:

lim
t→∞

log yt

t
= lim
t→∞

∫ t
0 r (ωs) ds

t

Birkhoff’s Theorem:

limt→∞

∫ t
0 r(ωs)ds

t = limt→∞

∫ t
0

∫
εsdFe(ε|ωt)ds

t =
∫ ∫
εdFe (ε|ω) dG (ω)



Endogenous growth and utility representation

• L : set of lotteries

• ({lk}
n
k=1 , {µk}

n
k=1): environment, lk ⊂ L, |lk| < ∞ and µk is the

arrival rate of lk

• c: gene, {l1, .., ln} → L, s.t. c (lk) ∈ lk



Theorem

For each L and for each ({lk}
n
k=1 , {µk}

n
k=1) , the surviving gene, c

∗, satisfies

c∗ (lk) ∈ arg max
L∈lk

U (L) ,

for all k = 1, .., n.



What is going on?

Take Robson’s model and shorten the intervals:

• outcome of the lottery is H or L with prob. half

• reproduce H or L kids

Shortening the intervals to ∆:

• outcome of the lottery is H or L with prob. half

• reproduce H∆ or L∆ kids



If the risk is aggregate:

log g (∆) =
1

2

(
logH∆ + logL∆

)

and

∆log g = log g (∆)

So:

log g =
1

2
(logH + logL) .



If the risk is idiosyncratic:

g (∆) =
H∆ + L∆

2

and

∆log g = log g (∆) ,

so

log g =
log

(
H∆+L∆

2

)

∆
.



Is it true that

lim
∆→0

log
(
H∆+L∆

2

)

∆
=
1

2
(logH + logL)?

L’Hopital Rule:

lim
∆→0

log
(
H∆+L∆

2

)

∆
= lim

∆→∞

1
(
H∆+L∆

2

)

(
H∆ logH + L∆ logL

2

)

=
1

2
(logH + logL) .



Conclusion

If choices affect growth smoothly then the optimal choice behavior has a

Neumenn-Morgenstern representation.


